Crystal Structure

Anti-inflammatory drugs. X^{1} Hydrated pyrrolidinium \{2-[(2,6-dichlorophenyl)amino]phenyl\}acetate (HP.D. $\mathrm{H}_{2} \mathrm{O}$)

Carlo Castellari, ${ }^{\text {a }}$ Fabio Comelli ${ }^{\mathbf{b}}$ and Stefano Ottani ${ }^{\text {b* }}$
${ }^{\text {ab }}$ Dipartimento di Chimica 'G. Ciamician', Universitá di Bologna, Via Selmi 2, 40126 Bologna, Italy, and ${ }^{\mathbf{b}}$ Centro Studi Fisica Macromolecole, c/o Dipartimento di Chimica 'G. Ciamician', Universitá di Bologna, Via Selmi 2, 40126 Bologna, Italy Correspondence e-mail: stefano@ciam.unibo.it

Received 18 April 2001
Accepted 18 June 2001

In the solid-state structure of the title compound, $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{~N}^{+}$.$\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{NO}_{2}{ }^{-} \cdot \mathrm{H}_{2} \mathrm{O}$, the asymmetric unit contains one cation, one anion and a water molecule. There is a network of hydrogen bonds which is similar to that found in the hydrated diethylammonium diclofenac salt. A comparison is made of the molecular conformation of the anions in the two related structures.

Comment

The systematic structural work being carried out on diclofenac salts, a type of non-steroidal anti-inflammatory drug (Castellari \& Sabatino, 1994, 1996; Castellari \& Ottani, 1995, 1996, 1997a,b, 1998; Castellari, Feroci \& Ottani, 1999; Castellari, Comelli \& Ottani, 1999; Castellari et al., 2001), has important pharmaceutical implications, since the presence of polymorphic forms and/or hydrates influences the bioavailability of the drug.

(I)

As shown in Fig. 1, the asymmetric unit of the title compound, (I), contains one cation, one anion and a water molecule. The bond lengths and angles of the anion are in good agreement with the corresponding values found in previous works. In particular, the carboxylate group shows a marked π delocalization. The diclofenac anion (D) is stabi-

[^0]lized, as usual, by two intramolecular hydrogen bonds between the amino group and atoms O 1 and Cl 1 . In the pyrrolidinium cation, the N atom is shifted out of the plane of the four C atoms by 0.308 (5) \AA, and C 17 and C 18 are out of the C_{4} plane by -0.101 (3) and 0.102 (3) \AA, respectively

The $\mathrm{C}-\mathrm{N}$ distances are normal, but the $\mathrm{C}-\mathrm{C}$ bond lengths are shorter than expected. A similar behaviour in the $\mathrm{C}-\mathrm{C}$ distances was reported previously for the pyrrolidinium cation (Teske et al., 1996). Since, in both structures, the displacement parameters of the C atoms opposite the N atom are larger than those of the adjacent C atoms, the apparent contraction of the $\mathrm{C}-\mathrm{C}$ distances could be attributed to the average displacement parameters. Actually, the distances involving C18, the atom affected by the largest thermal motion, are the shortest; $\mathrm{C} 15-\mathrm{C} 18=1.458$ (4) \AA and $\mathrm{C} 17-\mathrm{C} 18=1.453$ (4) \AA.

The intermolecular hydrogen-bond network is similar to that reported recently for the hydrated diethylammonium diclofenac salt (HDEA•D•H2O; Castellari et al., 2001). In both salts, the anions, cations and water molecules are linked into two-dimensional networks lying in a plane, i.e. [001] and [100] for HDEA•D• $\mathrm{H}_{2} \mathrm{O}$ and HP•D• $\mathrm{H}_{2} \mathrm{O}$, respectively. The intermolecular hydrogen-bond scheme involves four normal hydrogen bonds, one charge-assisted between the anion and the cation, and three involving the water molecule, where the $\mathrm{O} 1 W$ atom acts as a donor towards the two carboxylate O atoms and as an acceptor towards the pyrrolidinium N atom.

A comparison of the molecular conformation of the diclofenac anion in the two structures is of some interest. The degrees of freedom of D can be described by the following dihedral angles between planes, the values being quoted for HDEA•D• $\mathrm{H}_{2} \mathrm{O}$ and HP•D• $\mathrm{H}_{2} \mathrm{O}$, respectively: $\mathrm{C} 1-\mathrm{C} 6 / \mathrm{C} 1-$

Figure 1
ORTEPII (Johnson, 1976) diagram of HP•D• $\mathrm{H}_{2} \mathrm{O}$. Non-H atoms are represented by displacement ellipsoids of 50% probability and H atoms by spheres of arbitrary size.
$\mathrm{N} 1-\mathrm{C} 7=16.5(1)$ and $18.2(3)^{\circ}, \mathrm{C} 7-\mathrm{C} 12 / \mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 7=$ 61.6 (1) and $49.5(2)^{\circ}, \mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 6 / \mathrm{C} 2-\mathrm{C} 13-\mathrm{C} 14=77.5$ (1) and $79.0(2)^{\circ}$, and $\mathrm{O} 1-\mathrm{C} 14-\mathrm{O} 2 / \mathrm{C} 2-\mathrm{C} 13-\mathrm{C} 14=56.3$ (2) and $52.6(2)^{\circ}$. Inspection of these values shows that the largest difference in the molecular conformation of the anions occurs in the dihedral angle between the dichlorophenyl ring (C7C 12) and the $\mathrm{C} 1 / \mathrm{N} 1 / \mathrm{C} 7$ plane [the difference in torsion angles $\left.\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 12=11.0(2)^{\circ}\right]$. However, we note that the smaller steric hindrance of the pyrrolidinium cation, compared with that of diethylammonium, influences the crystal packing.

In HP•D $\cdot \mathrm{H}_{2} \mathrm{O}$, the average $\mathrm{H} \cdots A$ distance is 1.84 (1) \AA and the density is $1.389 \mathrm{Mg} \mathrm{m}^{-3}$. In contrast, the average $\mathrm{H} \cdots A$ distance in HDEA $\cdot \mathrm{D} \cdot \mathrm{H}_{2} \mathrm{O}$ is 1.90 (1) \AA and the density is $1.280 \mathrm{Mg} \mathrm{m}^{-3}$. The higher packing efficiency in HP•D• $\mathrm{H}_{2} \mathrm{O}$ compared with HDEA•D $\cdot \mathrm{H}_{2} \mathrm{O}$ most likely results in lower stresses to accomodate the anions in the crystals. This may consequently lead to the smaller twist angle between the two phenyl rings, viz. 60.68 (8) versus 72.4 (2) ${ }^{\circ}$.

Experimental

Crystalline HP•D• $\mathrm{H}_{2} \mathrm{O}$ was prepared by mixing equivalent molar amounts of diclofenac acid and pyrrolidine. Crystals were obtained from a water solution.

Crystal data

$\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{~N}^{+} \cdot \mathrm{C}_{14} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{NO}_{2}{ }^{-} \cdot \mathrm{H}_{2} \mathrm{O}$	
$M_{r}=385.28$	$D_{x}=1.389 \mathrm{Mg} \mathrm{m}^{-3}$
Monoclinic, $P P_{1} / c$	Mo $\mathrm{K} \mathrm{\alpha}$ radiation
$a=18.9631(7) \AA$	Cell parameters from 5166
$b=9.6845(3) \AA$	reflections
$c=10.0505(4) \AA$	$\theta=2.5-26.1^{\circ}$
$\beta=93.1340(10)^{\circ}$	$\mu=0.37 \mathrm{~mm}^{-1}$
$V=1842.99(12) \AA^{3}$	$T=293(2) \mathrm{K}$
$Z=4$	Block, colourless
Data collection	$0.5 \times 0.5 \times 0.4 \mathrm{~mm}$
Bruker SMART 2000 CDD	
diffractometer	$\theta_{\text {max }}=25.0^{\circ}$
ω scans	$h=-22 \rightarrow 22$
17027 measured reflections	$k=-11 \rightarrow 11$
3244 independent reflections	$l=-11 \rightarrow 11$
2046 reflections with $I>2 \sigma(I)$	112 standard reflections
$R_{\text {int }}=0.087$	every 20 reflections
	intensity decay: $<2 \%$

Table 1
Selected geometric parameters $\left(\mathrm{A}^{\circ},{ }^{\circ}\right)$.

$\mathrm{O} 1-\mathrm{C} 14$	$1.248(3)$	$\mathrm{C} 15-\mathrm{C} 18$	$1.458(4)$
$\mathrm{O} 2-\mathrm{C} 14$	$1.253(3)$	$\mathrm{C} 16-\mathrm{C} 17$	$1.487(4)$
$\mathrm{N} 2-\mathrm{C} 15$	$1.483(3)$	$\mathrm{C} 17-\mathrm{C} 18$	$1.453(4)$
$\mathrm{N} 2-\mathrm{C} 16$	$1.498(3)$		
			$105.9(2)$
$\mathrm{O} 1-\mathrm{C} 14-\mathrm{O} 2$	$123.8(2)$	$\mathrm{C} 17-\mathrm{C} 16-\mathrm{N} 2$	$107.3(3)$
$\mathrm{C} 15-\mathrm{N} 2-\mathrm{C} 16$	$106.6(2)$	$\mathrm{C} 18-\mathrm{C} 17-\mathrm{C} 16$	$108.0(3)$
$\mathrm{C} 18-\mathrm{C} 15-\mathrm{N} 2$	$104.7(2)$	$\mathrm{C} 17-\mathrm{C} 18-\mathrm{C} 15$	
			$79.1(3)$
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 6$	$-18.2(4)$	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 13-\mathrm{C} 14$	$-52.6(3)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 13$	$1.3(3)$	$\mathrm{C} 2-\mathrm{C} 13-\mathrm{C} 14-\mathrm{O} 1$	
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 12$	$-52.4(4)$		

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041$
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0776 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.037$
$\Delta \rho_{\max }=0.29 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.30 \mathrm{e}^{-3}$
Extinction correction: SHELXL97
Extinction coefficient: 0.0047 (10)
$S=0.89$
3244 reflections
247 parameters
H atoms treated by a mixture of independent and constrained refinement

Table 2
Hydrogen-bonding geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N1-H1 \cdots Cl1	$0.92(2)$	$2.53(3)$	$2.983(2)$	$110(2)$
N1-H1 OO1	$0.92(2)$	$2.09(3)$	$2.898(3)$	$144(2)$
O1 $W-\mathrm{H} 1 W \cdots$ O2	$0.93(2)$	$1.83(2)$	$2.733(3)$	$164(4)$
O1 $W-\mathrm{H} 2 W \cdots 1^{\text {i }}$	$0.94(2)$	$1.80(2)$	$2.730(3)$	$170(3)$
N2-H11 \cdots O2 $^{\text {ii }}$	$0.92(1)$	$1.85(1)$	$2.736(3)$	$162(3)$
N2-H12 \cdots O1 W	$0.92(1)$	$1.86(2)$	$2.758(2)$	$164(3)$
S				

The H 1 atom and the H atoms bonded to the N 2 and $\mathrm{O} 1 W$ atoms were located from a difference synthesis and were refined isotropically. The remaining H atoms were placed in calculated positions and refined riding on their parent atoms ($\mathrm{C}-\mathrm{H}=0.93$ and $0.97 \AA$).

Data collection: SMART (Bruker, 1998); cell refinement: SMART; data reduction: SAINT-Plus (Bruker, 1999); program(s) used to solve structure: SHELXS86 (Sheldrick, 1990); program(s) used to refine structure: SHELXL93 (Sheldrick, 1993); molecular graphics: ORTEPII (Johnson, 1976).

We thank Servizio Italiano di Diffusione Dati Cristallografici del CNR (Parma) for access to the Cambridge Structural Database (Allen \& Kennard, 1993).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: NA1521). Services for accessing these data are described at the back of the journal.

References

Allen, F. H. \& Kennard, O. (1993). Chem. Des. Autom. News, 8, 1, 31-37. Bruker (1998). SMART. Version 5.0. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (1999). SAINT-Plus. Version 6.01. Bruker AXS Inc., Madison, Wisconsin, USA.
Castellari, C., Comelli, F. \& Ottani, S. (1999). Acta Cryst. C55, 1054-1056.
Castellari, C., Comelli, F. \& Ottani, S. (2001). Acta Cryst. C57, 437-438.
Castellari, C., Feroci, G. \& Ottani, S. (1999). Acta Cryst. C55, 907-910.
Castellari, C. \& Ottani, S. (1995). Acta Cryst. C51, 2612-2615.
Castellari, C. \& Ottani, S. (1996). Acta Cryst. C52, 2619-2622.
Castellari, C. \& Ottani, S. (1997a). Acta Cryst. C53, 482-486.
Castellari, C. \& Ottani, S. (1997b). Acta Cryst. C53, 794-797.
Castellari, C. \& Ottani, S. (1998). Acta Cryst. C54, 415-417.
Castellari, C. \& Sabatino, P. (1994). Acta Cryst. C50, 1723-1726.
Castellari, C. \& Sabatino, P. (1996). Acta Cryst. C52, 1708-1712.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1993). SHELXL93. University of Göttingen, Germany. Teske, D., Subbaraman, K. \& Drumheller, E. (1996). Inorg. Chem. 35, 57815785.

[^0]: ${ }^{1}$ Part IX: Castellari, Comelli \& Ottani (2001).

